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We calculate the direction~tirection correlations between the tangent vectors of 
an oriented self-avoiding walk (SAW). Let Je(x) and J~(0) be components of 
unit-length tangent vectors of an oriented SAW, at the spatial points x and 0, 
respectively. Then for distances Ixl much less than the average distance between 
the endpoints of the walk, the correlation function of J"(x) with J"(0) has, in d 
dimensions, the form (J~(x) Jr(0)) =k(d)(x~x ~ -  �89 The dimen- 
sionless amplitude k(d) is universal, and can be calculated exactly in two dimen- 
sions by using Coulomb gas techniques, where it is found to be k(2) = 12/257z 2. 
In three dimensions, the e-expansion to second order in e together with the 
exact value of k(2) in two dimensions allows the estimate k(3)= 0.0178--0.0005. 
In dimensions d~>4, the universal amplitude k(d) of the direction~lirection 
correlation functions of an oriented SAW is the same as the universal amplitude 
of the direction-direction correlation functions of an oriented random walk, and 
is given by k(d) = F2(d/2)/(d - 2)~ a. 

KEY WORDS: Oriented polymers; oriented self-avoiding walks; direction- 
direction correlation functions; complex O(N) model; Coulomb gas; 
e-expansion. 

1. I N T R O D U C T I O N  

A single l ong  p o l y m e r  in  good  so lu t i on  is a cri t ical  system (see, e.g., ref. 1). 
The  inverse  l eng th  l - ~  of  the p o l y m e r  plays  the role of r educed  t e m p e r a t u r e  
T - T  c, a n d  the cri t ical  p o i n t  is at l = oo. As 1--* oo, ce r ta in  geomet r ica l  

p roper t i e s  of the p o l y m e r  scale in  a s imple  way  wi th  l. F o r  ins tance ,  the 
average  spa t ia l  d i s t ance  R b e t ween  the e n d p o i n t s  of a l inear  p o l y m e r  is 
g iven by  

R ~  al ~', l--* oo (1) 

i Department of Physics, University of California, Santa Barbara, California 93106. 

89 

0022-4715/91/0400-0089506.50/0 �9 1991 Plenum Publishing Corporation 



90 Mil ler 

where a is independent of 1. The exponents (e.g., v) and dimensionless 
ratios of amplitudes of these scaling laws do not depend on the detailed 
molecular structure of the polymer: they are universal. To calculate these 
universal quantities, we may work with the simplest system that behaves 
like a polymer in good solution. The relevant properties are (1) flexibility 
(a polymer assumes its configurations with equal probability) and (2) 
excluded volume (the short-range repulsion between a polymer's con- 
stituent monomers prevents it from intersecting itself). The simplest object 
which possesses these properties is a self-avoiding walk, i.e., a walk on a 
lattice, which never visits the same site more than once. Therefore, in order 
to calculate universal quantities characterizing the asymptotic geometry of 
a polymer, we may restrict our attention to SAWs. 

In this article, we shall study oriented SAWs (polymers). An oriented 
SAW is simply a SAW with an "arrow" that runs along its length (Figs. 1 
and 2). A polymer, for example, with the structure . . . .  A-B-C-A-B-C-A . . . .  
is oriented, because the sequence defined by A ~ B ~ C is distinct from the 
defined by A--* C ~ B. Alternatively, a polymer could be compose~t of 
monomers with dipole moments joined "head to tail." We shall take the 
probability distribution of spatial configurations of an oriented SAW to 
be the same as that of a SAW without orientation. That is, we take all 
allowed spatial configurations of an oriented SAW of fixed length to be 
equally probable. The average shape of a long oriented SAW is therefore 
the same as the average shape of a SAW without orientation; e.g., they 
both have the same exponent v. However, an oriented SAW has, in 
addition, a direction. The direction of a given step of an oriented SAW can 
be represented by a vector tangent to the step, with the arrow of the 
tangent vector pointing in the same direction as the arrow on the walk. We 
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Fig. 1. An oriented SAW on a two-dimensional  square lattice. 
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Fig. 2. A-B polyester, an oriented polymer. 

shall calculate the correlation functions of these tangent vectors J(x) at 
.different points along an oriented SAW. In particular, we shall calculate the 
direction direction correlation functions ( J ~ ( x ) J ' ( 0 ) )  for distances Ixl 
between the tangent vectors J whose correlations we are considering much 
less than the average distance R between the endpoints of the walk, but 
much greater than the lattice spacing. This is the critical regime, where we 
expect universal behavior. It should be noted that the vector x is the posi- 
tion of a step of the walk in space, and not the distance along the length 
of the walk. 

There are essentially three steps in the calculation. We first generalize 
a remarkable correspondence, found by de Gennes, (2~ between SAWs and 
an O(N) model, to oriented SAWs and a complex O(N) model. More 
precisely, wed show that oriented SAWs are described by the N ~ 0 limit 
of the complex O(N) model, and identify on the lattice the operator in the 
complex O(N) model which corresponds to the tangent vector of an 
oriented SAW. It turns out to be a conserved current, associated with a 
U(1) symmetry of the complex O(N) model. The critical behavior of the 
current-current correlation functions of the N ~  0 complex O(N) model 
thus gives us the direction-direction correlation functions of an oriented 
SAW, on distance scales much less than the average distance between the 
endpoints of the walk (the "correlation length"). We then show that, at the 
critical point of the complex O(N) model, general considerations 
completely determine the functional form of the current-current correlation 
functions. These considerations are rotational covariance, current conserva- 
tion, and dimensional analysis. We can use dimensional analysis to 
understand how the current-current correlation functions scale under dila- 
tations because conserved currents associated with internal symmetries of 
a theory do not acquire an anomalous dimension. (3) Finally, we calculate 
the dimensionless amplitude k(d). Note that since k(d) is dimensionless, it 
is universal (once the normalization of J has been fixed; in Section 4 we 
shall show that a natural normalization exists). 

In the calculation of the universal amplitude k(d) one may distinguish 
three cases depending on the dimension d of space. In two dimensions 
k(2) can be calculated exactly by mapping the complex O(N) model onto 



92 Miller 

a Coulomb gas. (4'5) In dimensions d~>4, oriented SAWs are correctly 
described by oriented random walks, and these in turn are described by a 
complex Gaussian model/6) The Gaussian model is a free field theory, so 
k(d) for d~>4 can be calculated exactly by using Wick's theoremJ 7) In 
dimensions 2 < d < 4  we shall apply the e-expansion ~8'9) to the continuum 
O(N) model to compute the amplitude k(d) to second order in e. This, 
along with the exact value of k(2), gives us an estimate for k(3). 

It should be possible to measure experimentally the amplitude k(d) of 
the direction-direction correlation functions of an oriented polymer. In 
practice, however, it may be difficult to distinguish one orientation of an 
oriented monomer from the opposite orientation. 

This paper has the following outline. In Section 2 we define the 
complex O(N) model on a hypercubic lattice, and show that the tangent 
vectors J of an oriented SAW correspond to a conserved current in the 
complex O(N) model. In Section 3, we use this correspondence to calculate 
the form of the direction-direction correlation functions, and to calculate 
in the continuum complex Gaussian model the amplitude kG(d) for orien- 
ted random walks. We also discuss what the direction-direction correlation 
functions look like. In Section4 we fix the normalization of J. In 
Section 5, k(2) is calculated exactly in two dimensions by mapping the 
O(N) model onto a Coulomb gas. tn Section 6, k(d) is calculated to second 
order in the e-expansion. The Feynman diagrams which contribute to the 
e-expansion are evaluated in the appendices. 

2. O R I E N T E D  S A W s  A N D  THE C O M P L E X  O(N) M O D E L  

In this section we will work on a d-dimensional hypercubic lattice 
generated by the orthonormal vectors ~ .  Vertices will be labeled by 
vectors x without indices, and lattice edges by vectors with indices, so that 
x ~ labels the lattice edge between the vertex x and x +  ~ .  Likewise, a 
vector lying on the lattice edge x ~ is written JU(x). 

The complex O(N) model on the lattice has N complex-valued spins 
S,(x), Si*(x) at each vertex, and lattice Hamiltonian 

N 

~H= - 8  ~ y~ Si(x) Si*(x') + S~*(x) S~(x') (2) 
( x , x ' )  i = l  

The first sum runs over all nearest neighbor pairs of the lattice, and the 
spins are normalized so that Y~=I SiSi *= N. 

The connection between the complex O(N) model and oriented SAWs 
follows from a graphical representation of the high-temperature expansion 
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of the complex O(N) model. This is an expansion of the complex O(N) 
partition function or correlation functions in powers of ft. To be definite, 
consider 

N 

Z = T r e  ~ ' = f l - [ d f 2 ~  ]7[ l~ e~(S'(x~s'*(~')+s'*(x)s'(~')~ (3) 
x ( x , x ' )  i - -  1 

Here dE2 x is the normalized angular measure ~ ds x = 1 of the ( 2 N - 1 ) -  
sphere defined by ~2N=1 SiS~*= N. NOW imagine expanding the integrand 
in powers of ft. Each term in the expansion is the trace of products of spins 
&(x) S*(x') and Si*(x) Si(x') times fi raised to some power. The graphical 
representation consists in assigning to each term in the expansion a graph 
on the lattice, with an oreinted bond pointing from x' to x, for each factor 

, t of Si(x) Si (x), and an oriented bond pointing in the opposite direction, 
from x to x', for each factor of S*(x) Si(x'). 

In the limit N ~ 0, only two kinds of terms are nonzero: terms with no 
factors of a spin Si(x), and terms with a single factor of &(x) S*(x): 

Tr Si(x) S*(x) = ~ f dE2 x, &(x) S*(x) = cSi, j (4) 
x '  

All higher moments are identically zero. (2' l~ [The proof is the same as for 
the real O(N) model, because the complex O(N) model expressed in terms 
of the real and imaginary parts of the complex spins Si = (1/x/2)(Stl + iSi2 ) 
is just a real O(2N) model.] Thus the graphical expansion of the partition 
function is a sum over all configurations of oriented loops, each loop 
weighted by fit. However, when we sum over the spin indices, each loop 
acquires a factor of N, which we have set to 0. Thus the only contribution 
to the partition function is from the graph with no loops, so that Z = 1 for 
N = 0 .  

Now consider the quantity 

(S~(x) a~S,(x)-S,(x) ~S~(x)) 

= ( S f ( x )  &(x + ~. ) -  sl(X) S*(x + ~ ) )  (5) 

where we have used the definition of the lattice derivative as a discrete 
difference 

aUf(x) = f ( x  + ~,)-- f(x)  (6) 

From above, the diagrams which contribute to the first of the two terms of 
Eq. (5) are, in the N ~ 0  limit, all oriented loops containing an oriented 
bond on the lattice edge x u pointing from x to x + ~  (Fig. 3). Each such 
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Fig. 3. A graph which contributes to < j l ( r ) J t ( 0 ) >  . Here, Jl(0)= l, J l ( r ) =  --1, and the 
graph has weight/~z4. 

loop is weighted by a fugacity ill. On the other hand, the diagrams which 
contribute to the second term are all oriented loops containing an oriented 
bond at x" pointing from x + Ou to x; that is, with orientation opposite the 
loops from the first term. The difference of the first and second terms is 
thus 

[w,( + x  ~') - wl( - x~') ]/~' (7) 
l - - O  

where m t ( + x  ~) is the number of oriented loops of length l containing an 
oriented bond on the lattice edge x ~, pointing from x to x +  ~ ,  and 
w ~ ( - x  u) is the number  of oriented loops of length l containing an oriented 
bond at x", but pointing in the opposite direction, from x + ~ to x. If we 
define the tangent vector J"(x) of an oriented loop to equal + 1 if the loop 
passes through the link x ~ pointing from x to x + ~ ,  - 1 if pointing from 
x + g~ to x, and zero if it does not pass through the link x ~ at all, then we 
see that Eq. (7) is the average value of J"(x), in an ensemble of oriented 
loops, whose fluctuating lengths are weighted by a fugacity fl~. Thus we 
have identified the operator in the complex O(N) model which represents 
the tangent vectors of oriented loops 

J~(x) = S ? ( x )  o~S, (x)  - S~(x) ~, 'S?(x)  (8) 

Of c o u r s e  <JU(x) > = 0, since for every oriented loop passing through x ~ in 
one direction, there is another loop, with the opposite orientation, passing 
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through the link in the opposite direction. However, correlations between 
tangent vectors at different points along an oriented loop are not zero, and 
it is these that we shall calculate. 

It may be useful, before proceeding with the continuum calculation, to 
see explicitly which diagrams contribute to the correlation function of two 
tangent vectors on the lattice 

( J~(x) J~(O ) ) = ( S*(x) Sl(x + ~) S*(O) S1 (~) ) 

- (Sl(x)  S*(x + ~ )  S*(O) Sl(Sv)) + c.c. (9) 

where the limit N ~ 0 is understood. Consider the first of the four terms on 
the right-hand side. We have two ways to "contract" or pair a spin with a 
complex conjugate spin. On the one hand, we may contract S*(x) with 
S~(x+ ~)  and S*(0) with Sl(d~) (contractions "at the same point"). The 
diagrams which contribute to this contraction are pairs of oriented loops, 
one containing an oriented bond at x ~ pointing from x to x + ~ ,  and the 
other an oriented bond at 0 v pointing from 0 to ~v. However, diagrams of 
this type are exactly canceled l~y similar diagrams from the second term on 
the right-hand side of Eq. (9) (the orientation of one of the two loops in the 
second term is opposite the orientation of the corresponding loop in the 
first term, but the numerical contribution of a loop to the high-temperature 
expansion is independent of its orientation). 

The other type of contraction pairs S*(x) with S~(dv) and S~(x + ~)  
with S~'(0). The diagrams which contribute to this contraction are all 
oriented loops containing both an oriented bond at x ~ pointing from x to 
x + ~ ,  and an oriented bond at 0 v pointing from 0 to ~v (Fig. 3). The 
corresponding contraction in the second term on the right-hand side of 
Eq. (9) is given by the sum of all oriented loops which, just as in the first 
term, contain an oriented bond at 0 v pointing from 0 to ~ ,  but, opposite 
to the first term, contain an oriented bond at x ~ pointing from x + ~, to x. 
Thus the difference of the first and second terms is the average value (in 
our ensemble of oriented loops) of the tangent vector (which we have 
normalized to one) at x ~ of oriented loops which pass through the lattice 
edge 0 v pointing from 0 to ~v. 

The analysis of the complex conjugate of the above two terms (the 
third and fourth terms on the right-hand side of Eq. (9)) is the same. Their 
difference is the average value of the tangent vector of an oriented loop on 
the link x" given that the loop contains an oriented bond at 0 v pointing 
from ~v to 0. The contribution to the graphical expansion of the third and 
fourth terms equals the contribution from the first two terms, because, 
aside from having opposite orientation, exactly the same loops contribute 
to each pair. We may therefore regard the correlation function 

822/63/1-2-7 
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(JU(x) jv(0) )  as twice the average value of a tangent vector to an oriented 
loop at x u given that the loop passes through the link 0 ~ in the direction 
0 to ~ .  

Four things should be noted. First, the tangent vectors introduced 
above are proportional to one of the conserved currents associated with 
the U(1) symmetry transformations S i ~  e-i~qs~ and S* ~ ei~us * of the 
complex O(N) model. Here q is the U(1) charge carried by the spin S .  
Second, the configurations which contribute to (J~(x)J~'(0)) are oriented 
loops, not oriented SAWs. However, we are interested in the limit l-~ 0% 
for fixed distance x between segments of the oriented loop, or, for fixed l, 
in distances [x[ much less than the loop radius of gyration RG: 
[x[ ~ R G ~ l v. In this regime an oriented loop looks the same as an oriented 
SAW. Therefore J as defined above is also the tangent vector of an oriented 
SAW. Third, for a fixed value of/~, only loops of length l,-~ 1/( /~-/3) ,  
where //c is the inverse critical temperature of the complex O(N) model, 
contribute appreciably to the sum. So, even though the ensemble consists 
of loops of fluctuating length, the calculation is valid for a SAW of fixed 
length. Fourth, the lattice tangent vectors J as we have defined them have 
a well-defined continuum limit. J(x) in the continuum limit does not, 
however, correspond to a derivative at x with respect to a parameter (e.g., 
arclength), since for a given continuum SAW this does not, in general, 
exist. 

3. F O R M  OF THE CORRELATION F U N C T I O N  

In the previous section we showed that the tangent vectors of an 
oriented SAW are described by a U(1) conserved current J of the N ~ 0 
complex O(N) model. In the present section we shall show that general 
properties of the current J completely determine the functional form of the 
direction direction correlation functions in the region of interest (distances 
much less than the average distance between the endpoints of the SAW, 
but much greater than the lattice spacing). We shall also calculate the 
universal amplitude kG(d) of the direction-direction correlation functions 
of oriented random walks. 

Since we are interested in universal quantities, we may work in the 
continuum theory. Due to the constraint Zsu=~ SiS* = N, the continuum 
limit of the lattice complex O(N) model is a complex nonlinear sigma 
model. This model in turn is believed to be in the same universality class 
as the continuum complex O(N) model, (11) with bare action 

S = ddx e"S~l,  Si-~ ~ SiS ? (lO) 
i = 1  i 1 
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The normal ordered conserved currents are j~L = 2:S,O~Si_ Si3"S*:. The 
constant 2 will be determined in the next section, where we normalize 
J - J 1 .  We are interested in the critical behavior of this model, which 
occurs as the renormalized mass tends to zero. In dimensional regulariza- 
tion (which we will use), the renormalized mass is zero if the bare mass is 
zero, so we have set the bare mass to zero. The currents have been normal 
ordered because, as we saw in the lattice version of the theory, contractions 
at the same point cancel identically. Henceforth J will be taken to be 
normal ordered. 

The functional form of the current current (or direction-direction) 
correlation functions follows (in the region of interest) directly from 
rotational covariance of the correlation functions, current conservation, 
and dimensional analysis. Dimensional analysis determines how the 
correlation functions transform under changes of scale. One may wonder, 
"Why is it legitimate to use dimensional analysis to determine how the 
correlation functions scale under dilatations?" For distances much less than 
its average radius of gyration, the statistics of an oriented polymer is 
governed by the critical point of an interacting theory, a complex O(N) 
model. One might, therefore, expect the conserved current J to acquire an 
anomalous dimension, and to transform under dilatations with a different 
power than that indicated by naive dimensional analysis. However, this is 
not the case: conserved currents arising from internal symmetries of a 
renormalizable field theory do not acquire an anomalous dimension. This 
follows immediately from the remarkable fact that such currents are not 
renormalized. (3~ In the context of continuum renormalized perturbation 
theory this means that the multiplicative factor Zj ,  which relates the 
renormalized current JR to the bare current J via JR = Z s I J ,  can be chosen 
to be identically equal to one. Or, what is the same, correlation functions 
of renormalized operators with insertions of factors of the bare current J 
are independent of the cutoff to all orders in perturbation theory, when 
expressed in terms of the renormalized coupling. We will use this result, 
which can be proved (3) using the Ward identities for conserved currents, 
throughout the paper. 

By dimensional analysis the current-current correlation function 
(J~(x) f ' (O) )  has dimension [length]--2d+2. The limit in which the length 
I of an oriented SAW tends to infinity corresponds to the renormalized 
mass m of the continuum complex O(N) model tending to zero. In the 
massless regime, ( JU(x )W' (0 ) )mus t  scale with [x[ like [x[--Zd+2(tglX]) y, 
where tr is the usual momentum scale which must be introduced in order 
to define a renormalized massless field theory, and y is an "anomalous" 
dimension. Because J does not acquire an anomalous dimension, y = 0 .  
Thus, in the massless theory ( J " ( x ) J ~ ( 0 ) )  must decay like tXI - 2 d + 2  
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Furthermore, by rotational covariance the correlation functions must be 
proportional to x~x~+ ax26 ~ times a scalar, and by current conservation, 
O~J~=0, a =  --1/2. So 

(dClIxV lX2 ~l~V) 
(J"(x)J~(O)>=k(d) iX12 d (11) 

where the amplitude k(d) is a dimensionless function of spatial 
dimension d. 

Since the form of the current-current correlations are completely 
determined by the above considerations, we have only to calculate the 
dimensionless amplitude k(d). For long oriented random walks, which are 
described by the free theory, g=0 ,  this is easy: we can compute the 
current-current correlation functions exactly using Wick's theorem ~7~ and 
then read off the amplitude ko(d). In the free massless theory, [Eq. (10)] 
with g = 0, the two-point function is simply 

F( d/2 - 1 ) 
<s,(o) &(x)> -- C(x)= a,,, 4 - ~  ~x~ a_ ~ -(12) 

and Wick's theorem gives us 

< JU(x) ,if(O) ) = 2~.2[-G(x) aVaUG(x) - a~'G(x) aVG(x)] 

(x#x v -  �89 2 ~5 ~v) 
=k~(d) txl2 d (13) 

where 

22F2(d/2) 422 
kG(d)= (d_2)~  a ( d - 2 )  S(d) 2 (14) 

and S(d) is the area of a (d-1)-sphere. Note that the functional form 
[-Eq. (13)] of the current-current correlation functions evaluated at the 
critical point of the free theory agrees with the general form given in 
Eq. (11), which is valid at all critical points of the complex O(N) model. 

The amplitude k(d) of an oriented SAW equals the amplitude of an 
oriented random walk kG(d) in dimensions d ~> 4. The upper critical dimen- 
sion of a SAW is four because the Hausdorff dimension of a random walk 
is two. In four dimensions, two-dimensional surfaces intersect generically 
only at isolated points, and in higher dimensions they do not intersect at 
all, except in exceptional cases. Thus, in dimensions d~> 4, a random walk 
is, de facto, a S A W .  (6) Below four dimensions, k(d) is modified by the 
interaction. 
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From Eq. (11) we see that correlations in direction fall off like 
1/]xl 2d-2. In order to see what the correlation function tells us about 
angular correlations, imagine fixing the tangent vector at the origin J(0) 
to be in some particular direction. Then the correlation function 
( J ~ ( x )  J~(0)) equals twice the average value of a tangent vector at x, given 
that the SAW goes through the origin with tangent vector J(0). Azimuthal 
symmetry around the line through J(0) allows us to restrict our attention 
to any one of the planes to which J(0) belongs [azimuthal symmetry 
implies that, on average, components of J ( x )  out of such a plane are zero]. 
Taking the vector at the origin J(0) to lie on the x I axis and the plane to 
be the (x 1, x 2) plane, and introducing polar coordinates x1=  JxF cos 0, 
x 2 = ]x] sin 0, we find the average values of the x I and x 2 components of 
J ( x )  to be 

k cos 20 
( J l ( x ) )  - 4 Ixl 2d-2 (15) 

k sin 20 
( J 2 ( x ) )  - -  4 ixl2d_ 2 (16) 

So we see that the average field of tangent vectors of an oriented SAW, 
with a fixed tangent vector at the origin, looks something like the field of 
an electric dipole around J(0). 

In two dimensions it is convenient to introduce complex coordinates 
z = x 1 + i x  2 and s = x ~ - i x  2. In the coordinate basis of z and s the metric 
becomes ds  2 = d z  ds  and current conservation reads 

O ~ J  ~ = O z J  z + ~zj-" = 2(c?zJ+ O f f )  = 0 (17) 

where J = Jz and J =  J e .  In terms of J, J, z, and s the direction-direction 
correlation functions [Eq. (11)] are easily found to be 

k(2)/4 
(J(z) J(0) > z2 (18) 

k(2)/4 
(J(s J(O)) = s (19) 

(J(z) l(0) > = 0 (20) 

From this we see that J is a function of z only and J a function of s so 
that J and J are conserved separately in Eq. (17). This is not surprising, 
because the complex O ( N )  model at a critical point, which is where the 
functional form Eq. (11) is valid, is conformally invariant. From conformal 
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field theory 112) we know that every operator of a two-dimensional 
conformally invariant theory is characterized by a pair of real numbers h 
and h, called conformal dimensions, which determine how the operator 
transforms under conformal transformations. In particular, the two-point 
function of an operator A with conformal dimensions (h, h) is constrained 
by scale invariance to be of the form 

a 

(A(z, ~) A(O)) z2h~2~ (21) 

where a is a constant. The conformal dimensions are related to the usual 
scaling dimension x and the spin s by x = h + h and s = h -  h. Since J is a 
vector, we know that it has spin one. Therefore s = 1 = h - h. On the other 
hand, since J is a conserved current, its scaling dimension is not changed 
by the interactions, and is given by dimensional analysis to be x = 1 = 
h +/~. Thus, the conformal dimensions of the operator J are h = 1 and 
ki = 0, while those of J are h = 0 and h = 1, which is just what we found 
above. 

4. N O R M A L I Z A T I O N  OF J 

The normalization of J is fixed by demanding 

( sl(o) S~(a) > = I ds~, ( J"(r) &(O) S*(a) ) (22} 

where the integral is over a ( d - 1 ) - s p h e r e  around 0, which does not 
contain the point a. This amounts to taking the charge q of the spin $1 to 
equal one. In terms of an oriented polymer, Eq. (22) sets the magnitude ]Jt 
of the current J (really a current density) equal to A l, where A is the 
cross-sectional "area" (dimension [-length] d-  1) of the polymer. (The cross- 
sectional "area" of a polymer is determined by the distance at which 
excluded-volume effects become important.) One may also regard one end 
of the polymer as a source, and the other end a sink of electric charge. 
Then Eq. (22) corresponds to unit current I =  IJI A = 1 flowing through the 
polymer. 

Since J is not renormalized, corrections to the free theory from the 
interaction are the same on both sides of Eq. (22), and thus cancel. We 
show this explicitly in Appendix B to second order in the e-expansion. We 
can therefore use the free theory to calculate the constant ,L Using Wick's 
theorem to calculate the correlation function on the right-hand side of 
Eq. (22), we have 



Direction-Direction Correlations of Oriented Polymers 101 

I ' ( d / 2 - 1 )  _FZ(d/2--1)r a l r 
4rcd/2ad_ 2 = ,~ "i~g 7 Jdf2  a [G(r) c ~ G ( r - a )  - G ( r - a ) O , G ( r ) ]  

= 2 Fg(d/2- -  l ) r a - '  ( (27c)(rE)(a 3)/2 ']((d-2) F ( ( d -  1)/2) F(1/2))  
16~ d \ F ( ( d -  1)/2) J \  a d 2/"(6//2) J 

F( d/2 - 1 ) 
- 2 4rcd/2aa_2 (23) 

Thus, 2 =  1 (which is just what we would have gotten from Noether's 
theorem). 

In two dimensions, Eq. (22) implies that the operator product expan- 
sion (13'14) of J(z)  with S(O) is of the form 

J(z) S ( 0 ) = ~ S ( 0 ) +  . . .  ( 2 4 )  
Z 

with e a constant. There is a similar equation for S* with -c~ instead of 
c~. Again, the constant a is determined by Eq. (22), 

<S(ri) S*(r2)> = f ds. <J~(r) S(r , )  S*(r2) > (25) 

where the integral is over the boundary of a region which contains the 
point rl but not the point r 2. In complex coordinates the integral becomes 

T ( J ( z )  S ( z l , 5 1 ) S * ( z e , e 2 ) )  - . ( J ( e ) S ( z ~ , i , ) S * ( z 2 ,  e2) ) (26) 
1 

This in turn equals 

- -  - + ( 2 7 )  
i z - -  Z 2 i 5 -- 22 

Since the contour only encloses the point rl, we have, after doing the 
contour integrals, 

1 
~ m  

4~ (28) 

So that 

1 
J(z)  S ( 0 ) = ~ z S ( 0 ) +  ... (29) 
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5. C A L C U L A T I O N  OF k (2 )  

In order to calculate k(2) we shall map the problem onto a Coulomb 
gas. The mapping is well known, (4'5~ but will be sketched briefly so that it 
is clear which operator in the Coulomb gas corresponds to the tangent 
vector J. There are essentially two steps. First the O(N) model is mapped 
onto a discrete solid-on-solid (SOS) model. Then it is argued that the SOS 
model renormalizes onto a Gaussian model. The spins of the O(N) model 
spin wave-vortex operators in the Gaussian model, and the current J 
becomes the curl of the bosonic field ~b. 

One starts with a complex O(N) model on a honeycomb lattice with 
N-component complex spins and partition function 

Z= f I] dg2(r) [] [1 + f l S ( r ) ' S * ( r ' ) + e . c . ]  (30) 
r <r , r '>  

The first product is over all the site of the lattice, the second is over all 
nearest neighbor pairs of spins. The spins are normalized so that S" S* =.N, 
and dg? is the normalized measure of a (2N-1)-sphere ,  ~ d~2 = 1. With 
these normalizations, ~d~(SiS*)=6+,j. Note also that later formulas 
involving N will differ by a factor of two from those of Neinhuis because 
the complex O(N) model is a real O(2N) model. 

Since the coordination number of a honeycomb lattice is three, the 
only graphs which contribute to the high-temperature expansion are 
oriented loops. Thus 

Z= ~ fl'NC= ~ fi+(2N) ~ (31) 
oriented loops 

loops 

where c is the total number of oriented loops in a graph, and l is the sum 
of their lengths. 

Each oriented graph in the high-temperature expansion can be 
associated with a configuration of a discrete SOS model on the triangular 
dual lattice. One assigns a height variable ~b(r), taken to be an integral 
multiple of 7~, to each site r of the dual lattice in such a way that the height 
on either side an oriented bond differs by r~, but is otherwise constant. We 
shall take the higher side to be on the left of the oriented bond. The total 
number of bonds in the original graph is given in terms of the variables ~b 
by (1/TZ)~_.<r,r,) I(~(r)-~(r')l, so that the sum over configurations of the 
height variables (restricted so that adjacent heights differ by at most re), 
with each configuration weighted by fl(1/~):~<r,r'>tO(r)--O<r')l, gives the complex 
O(N) partition function, except that each oriented loop is weighted by 1 
rather than N. This is easily remedied by assigning to each left turn of an 
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oriented loop the weight e iu and each right turn the weight e iu. On the 
plane, the total number of right turns of an oriented loop minus the total 
number of left turns equals _+ 6, so summing over both orientations of the 
loop, we see that if we set 

2 cos 6 u = 2 N  (32) 

the partition functions of the complex O(N) model and the TSOS model 
are equal. 

Based on an analysis of renormalization group flows, Nienhuis argued 
that the critical triangular SOS (TSOS) model renormalizes onto the 
Gaussian model 

A = ~ f d2r ~,(D O~(J (33) 

with coupling constant g given by 

2 N =  -2 .cos  ~g, g c [1, 2] (34) 

For  N =  0, g = 3/2. However, this action as it stands only describes the 
critical complex O(1) model, i.e., the XY model. In order to describe an 
O(N) model for arbitrary N, it is necessary to add to the action 2ie~b(oo), 
which corresponds to putting an electric charge at infinity (see, e.g., ref. 15). 

To see this, consider the spin-spin correlation function ( $ 1 ( 0 ) S * ( r ) )  
of the complex O(N) model. On the honeycomb lattice 

(Sl(0) S*(r))= Z F (3S) 
oriented 
SAWs 

where the sum is over all oriented SAWs from 0 to r, and l is the length 
of a walk. In general there are also loops, but these are suppressed when 
N =  0. In the TSOS model an oriented SAW represents a domain wall of 
height ~, with a vortex operator at one extremity and an antivortex 
operator at the other (Fig. 4). Since the discontinuity in the height ~b at the 
domain wall equals ~, the vortex (antivortex) operator must carry 
magnetic charge m = 1/2 ( -1 /2 ) .  We cannot, however, identify the spin 
operator S with a vortex operator, because in the O(N) model SAWs of 
equal length are weighted equally, while in the TSOS model a walk picks 
up a factor of exp(+6iu)  each time it winds around one of the endpoints. 
This factor can be accounted for by multiplying both vortex operators by 
a spin wave operator 

exp(--6iuO/~) (36) 
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Fig. 4. 
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A graph which contributes to <$1(0 ) S~(r)) on the honeycomb lattice. In the TSOS 

model the walk is represented by a wall of height 7r. 

for, each time a walk winds around an endpoint, the height of the endpoint 
r changes by _+7% which exactly compensates for the factor from the 
curvature of the walk. So the spins S, S* are represented by a combined 
spin-wave vortex operator Oe, m with electric charge e = -6u / rc  = 1 - g  and 
magnetic charge m = +_ 1/2. The excess charge 2e in the correlation function 
is exactly canceled by the charge at infinity in the action. 

The magnetic operator Oo,,, has no simple representation in terms of 
r but it can be written as an exponential the variable ~ dual (16) to r Thus, 
in the continuum, the spin operator of the O ( N )  model has the 
representation 

O e ,  m = e ier  (37) 

with e, m, and g given above. r and ~ are related by the Cauchy-Riemann 
equations 

8~0 = euv8~r (38) 

where e~v is the two-dimensional totally antisymmetric tensor. These equa- 
tions imply that the function 0 = �89162 + i~) is holomorphic. 

Since SAWs are domain walls in the TSOS model, it is clear that the 
magnitude of a tangent vector J of a SAW is proportional to the difference 
in height between adjacent hexagons r  r and that the direction is 
along the common face of the hexagons, perpendicular to the discrete 
gradient. In the continuum limit the discrete difference becomes a gradient, 
so that 

J ,  = ~e~vS~ r = ,~8~@ (39) 

where i is a constant. 
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The constant 2 is computed by calculating the operator product 
expansion 

Jz(Z) Oe, m(O) = ~az~lOe, m(O ) (40) 

and comparing the result with Eq. (29). To do this we write ~b and ~, in 
terms of the holomorphic function 0 and its complex conjugate 0: r = 
O(z)+O(Z) and ~b = (1/i)[O(z)-O(Z)]. Correlation functions are given by 
the inverse of the quadratic part of the action, Eq. (33), 

1 
<r 06(0) > = - ~ - l n  Irl (41) 

g 

so that 

- I  (O(z) 0(0)> =-~-g in Z 

<O(z) 0(o)> = o 
(42) 

The operator product expansion of J(z) with Oe, m(O) c a n  be computed 
using Wick's theorem. Since {00 > is identically zero, 0 does not play a role 
in the contractions. So 

J(z)  Oe, m(O ) = ~z~ te  ier mg6 

~, (ie--img)~O n 
= - e  (ie+img)O~zO), n] 

i n=O 

2e(i~+i~g)~ ~ (ie-img)n[-l" ) 

ft(mg-e) 
~- \ T / I  Oe'm(O) 

710 n-  1 

(43) 

On the other hand, from Eq. (29) we have 

1 
J(z)  Oe, m(O ) = ~ Oe, m (44) 

from which we conclude 

g 
,~ - ( 4 5 )  

2~(e - mg) 
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Knowing J(z), we can compute k(2), 

( J(z) J(O) )= 22 I ~ c3zO(z) ~ c3zO(O) ) 

Consequently, 

222 g 
k -  

g - 2zr2(e_ rag) 2 

22 1 k(2) ! 

2g z 2 4 z 2 

Setting g = 3/2, e = 1 - g  = --1/2, and m = 1/2, we have our result 

(46) 

(47) 

12 
k(2)=25~2 (48) 

6. e -EXPANSION OF k(d) 

We now turn to the e-expansion (s'9) of k(d). We shall take 2e = 4 - d .  
This differs by a factor of two from the usual choice of e in the statistical 
mechanics literature, but it is common in particle physics calculations, and 
involves fewer factors of 1/2 in the gamma functions which always arise. 
Since the conserved current J is not renormalized, correlation functions of 
renormalized operators with insertions of the bare J (composed of the bare 
fields: J=JR=~*c3q~-q~6Oq~*) are  finite when expressed in terms of the 
renormalized coupling. Of course, the two-point function (JU(x)J"(O)) 
diverges as x approaches 0. In momentum space this is manifested by a 
pole in e. However, for the purpose of calculating k(d), we can work in 
position space and keep x finite, so this is not a problem. 

The first step in the calculation is to write down the diagrams which 
contribute to (JU(r)J~(0)). To second order in g, these are shown in 
Fig. 5. Note that there are no tadpole diagrams. This is because such  

2 

4 5 

Fig. 5. Feynman diagrams which contribute to (J~(x) Jr(0)), to second order in g. 
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diagrams, when evaluated in momentum space, have no external momenta 
flowing through them. The argument of the integral they represent is 
therefore a pure power (the theory is massless), and in dimensional 
regularization integrals of powers are defined to be zero. (~7) 

The first diagram is just the free field correlation function. In position 
space it equals 

4 (rUr ~ -  �89 ~v) 
( d -  2) S(d) 2 [r[ 2d 

(49) 

and in momentum space, 

rdap (2p~' -U') (2p~-k  ~) F(e)F2(1-e)(k ,k~-6~'"k  2) 
J Dr d p2(-~~-k)i = (4~)d/2(d-- 1) F(2 -- 25)(k2) ~ 

(50) 

Since we are only interested in the amplitude k(d), we can trace over the 
vector indices. This will make the evaluation of diagram 5 easier. The trace 
of Eq. (50) is just 

v ( 5 )  v 2 ( 1  - e ) ( k 2 )  ' 

(47t) a/2 F(2 - 25) 
(51) 

The second and third diagrams are identically equal to zero. This is 
because the current J consists of two terms with opposite signs, so that the 
contribution to diagrams 2 and 3 from (q~*~"q~(r) qt*~?~(0)) is canceled by 
the contribution from (q~*0"q~(r)q~vq~*(0)). So the first corrections to the 
free theory are of order g2. 

The fourth and fifth diagrams will be evaluated in Appendix A. ~ 
Two aspects of their calculation might be noted. First, since we are 
calculating to second order in g*, or to second order in e, it is sufficient to 
calculate both diagrams to order 1/e in momentum space. Why order 1/e 
rather than order 17 Because in momentum space we pick up a pole in 5 
from the high-momentum region, which corresponds in position space to 
r ~ 0 .  When we Fourier transform back to position space this pole 
disappears. Second, diagrams 4 and 5 each have double poles in 5. It is only 
when we add them together that the double poles cancel, and we are left 
with a simple pole. 

From the Appendix, the sum of the traces of diagrams 1, 4, and 5 
equals 

F(~) F2(I -- g)(k2) ~- '  (1 g2 
~-4-~-~-F-~ ~ -- 2 ~  8(T~)j) (52) 
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Comparing this expression with Eq. (51), we see that to second order in g, 

( g2 ) 4 (rUr ~' 1"2 ~'v 
- ~ ,  a ) (53) (JU(r) J~(O)>= 1 8(-4--~)d ( d _ 2 )  S(d)2 ir12 a 

The fixed point at which we will evaluate the above expression is given 
by the zero of the beta function for the renormalized coupling constant gR" 
TO first order in e it equals 

<J"(r) 2(o) 

so that 

g* e 
(4~) d -  2 

(54) 

e 2 ) 4 (r~r ~ - �89 "~) 

= 1 - ~  ( d _ 2 )  S(d)2 irj2 a (55) 

Expanding [ ( d - 2 ) S ( d )  2] 1 (see ref. 19) in powers of e to order e 2 
and multiplying by ( 1 -  e2/32) gives us the e-expansion, 

1 {1+(27 l+21nrc)e  k~( e ) = 27r-- ~ 

+5 7 ( ~ - 1 ) + 6  - + ( 2 ~ - l ) l n ~ + ( l n ~ ) 2 -  e2 + '~  

0.0051330 + 0.0125445e + 0.0210452e 2 + ... (56) 

where 7 is Euler's constant = 0.5772..., and the subscript on k~ means that 
the function is to be evaluated with e rather than d. 

In two dimensions ( e = l )  the e-expansion predicts k(2)=0.0387, 
which is smaller than the exact value k(2)= 12/25~2~0.0486 by about 
20 %. In three dimensions, the expansion gives k(3)~  0.0167. Knowledge of 
the exact value of k(2) in two dimensions should allow us to improve this 
estimate. [It fact we also know the exact k(1) in one dimension: k(1)= 4, 
because there are only two oriented SAWs which contribute the current- 
current correlation function. However, this does not help us improve our 
estimate of k(3), because k(1) is about 100 times larger than k(2), so that 
it is difficult to incorporate the point k(1) with a simple Pad6 form.] In 
particular, we can fit the e-expansion to a Pad6 approximant ~2~ of the form 

k,(1)+ ( 1 - ~ )  P(e) 
k~(e) - (57) 

1+( l -e )  Q(e) 
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where P and Q are polynomials in e. Since we only know the first three 
terms in the e-expansion, we can fit three coefficients in the Pad6 
approximant. The case where P is a second-order polynomial and Q = 0, 
and where P is linear and Q a constant, have almost the same graph. In 
the first case we find k(3)~  0.01767 and in the second, k (3)~  0.01800. The 
other Pad6 approximants, with P a constant and with P equal to zero, 
cannot be fit to the e-expansion. Thus we conjecture that k(3)~0.01783. 
The error in this estimate cannot be determined without going to higher 
order in the e-expansion. However, we expect that (1) the e-expansion will 
be more accurate in three dimensions than in two, and (2) the Pad6 
approximant, which incorporates the exact value of k(2) in two dimen- 
sions, makes the agreement even better. Since the e-expansion alone is only 
about 20% too small in two dimensions, we should expect that the 
e-expansion, with the exact two-dimensional result taken into account by 
the Pad6 approximant, gives a value of k(3) in three dimensions to within 
a few percent of the exact value. So we estimate that 

k(3) = 0.0178 + 0.0005 (58) 

where the subjective error reflects the above considerations. 

APPENDIX  A 

1. In this Appendix we compute diagrams 4 and 5 of Fig. 5. 
Diagram 4 represents the integral 

_g2  
~ - -  (U+  1) f ddl (2U-k")(ZlV-k~)S(12) 

(2~) d [4(l__ kt2 (A,1) 

where X(I 2) is the lowest order contribution to the self-energy, and is given 
by 

V'(12)=f ddP daq 1 vB(1-e )  V( - l+2e) (12) l_2  ~ 
(2=)d (2rc)d p2q2(l_ p _ q)2 - 0~--F-~ ~ ~ 

(A.2) 

The integrals in Eq. (A.1) are straightforward. I find, after taking the trace, 
and setting N =  0, that the diagram equals 

g2 FC(e ) F(1 -- e)2(k2) 1 E 1 

7L J 
I-F(1 - e)2F(- 1 + 2e) r o e )  r ( 1  - 3e ) / ' ( 2  - 2e)[1 + 2e + o(e2)]] 

x 
L J 

(A.3) 
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Notice that there is a pole of order e 2, which must be canceled by 
diagram 5. 

Diagram 5 represents the integral 

_g2 ( N + I )  ('j daP daq ddr (2p"-M)(2q~-M) 
~ ( A ~ 4 )  (2=) a (2=) d (2=) a p 2 q Z ( p 2 k - ~ T k - ~ - ~ -  q - r) 2 4 

The internal loop is easily integrated. Doing the integral, taking the trace, 
and setting N---0, one has 

g2 F(~)F(I_e)2  dap daq (p_q)2+k2/2_2p2 . 

2 (4n)d r (2-  2~) / _ - ~ - ( ~ -  q)2~ (2rc)d (2~)a pZq2(p (A.5) 

There are now three integrals to do, In the third integral, the p2 in the 
numerator cancels the similar term in the denominator, and the integral 
equals 

/ ' ( 1  - -  ~)4 /~( - -  1 -~- 3~;)(k2) 1 --3e 
_ g 2  (A.6) 

(47r)3d/2( - 1 + 2s)(2 - 3g) F(3 -4e )  

The remaining two integrals of diagram 5 are more difficult, but can be 
evaluated to the desired order by expanding the integrals in position space 
with Gegenbauer polynomials. Using the formulas of Chetyrkin et al., ~18) 
we find that sum of the first and second integrals of Eq. (A.5) equals 

g2F(g) F(I - e)2(k2)l - ~ [ F(1-e)3F(2-2e)F(3~)  7 
(4re) e/2 F-~ --- 2e-) L8(4~)2 F(~ ~ 5 - - ~  s 

x I ~ + ~ +  o(e)] (A.,) 

Adding all the contributions from diagram 4 and diagram 5 gives 

r (~)  r (1  - ~)2 (k2)1-~ 
(4re)d/2 F(2- 2e ) (8 (~- )d )  (A.8) 

A P P E N D I X  B 

In this Appendix we show explicitly (to second order in ~) that 
Eq. (22) is unchanged by the interactions. We shall first compute the 
renormalized correlation function 

<~bR(p) ~b*(--p) ) = Z~ -~ <~b(p) O*(--p) ) (B.1) 
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The wave function renormalization constant Zo is chosen in such a way 
that it cancels the poles in e which arise in the perturbative calculation of 
the bare correlation function. We will use the minimal subtraction scheme. 
To second order in g only two diagrams contribute to (~b(p) ~b*(-p)):  the 
free field correlation function, and the free field correlation function with 
one insertion of the self-energy X(p2), Eq. (A.2). So 

[-1 g22_ ~1 --. 2, 71]J (~b(p) ~b*(-p) > = L~-- ~ + 2_,(p ) 

= ~  8e(4~) a 2- 

where ~ = ln(4~)+ 2 - 7  and 7 is Euler's constant. We therefore have from 
Eq. (B.2) 

and 

g2 
Z ~ = I  8e(4rc)a (B.3) 

(~bR(p) ~b,(_p)> = ~22 { 1 g2 8(4~/[~+ ~+ o(e)]} (B.4) 

Now we turn to the right-hand side of Eq. (22). To second order in g, 
three diagrams contribute. These are shown in Fig. 6. The first of these 
diagrams equals 

i(2~) d 6(k + p + q) G(p) G(q)(q ~' - p") (B.5) 

Fig. 6. 

I 2 3 

The nonzero Feynman diagrams which contribute to (Je(k)~(p)~b*(q)) to second 
order in g. 

822/63/1-2-8 
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where G(p)= lip 2. The second diagram equals 

2 
i(27c) a 6(k + p + q) G(p) G(q)(q ~ - p~) 2 [G(p2) X(P2) + G(q2) Z(q2)] 

= i(2r0 a 6(k + p + q) G(p) G(q)(q ~ - p~') - -  

[ F ( 1 -  e)3 F ( -  l + 2e)[ l + o(5) ]] 
x F(3 - 35) 

and the third diagram equals 

g2 

(4x)  a 

(B.6) 

g2 
i ( 2 ~ z ) a f ( k + p + q ) G ( p ) G ( q ) - f  (j das dal ( 2 s ~ - k  ~) 

(2re) a (2re) a s2(k - s) 2 12(l - s - k) 2 

= i(2~) a 6(k + p + q) G(p) a(q)(q ~ - p~) - -  

x I F ( l - e ) 3 F ( 2 e ) E l + 7 5 / 2 + ~  I F ( 2  - 35) 

g2 

4(47r) d 

(B.7) 

Adding the three contributions above and multiplying by Z~ 1, we have to 
second order in 

(J"(k) OR(P) O*(q) ) 

= i(2~) a 6(k + p + q) G(p) G(q)(q ~ - pV) I1 
( 

g2 [-5 
+ 

(B.8) 

Comparing this with Eq. (B.4), we see that the corrections to the free 
theory from the interaction cancel on either side of Eq. (22), as was to be 
shown. 
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